A Simulation Framework for Decentralized Data Fusion Networks

Viktor Deleskog C4ISR, Sensor Informatics Swedish Defence Research Agency (FOI)

Outline

- Introduction
- The framework
- Case study
- Conclusions

Introduction

- Sensors for situational awareness using target tracking
- Increased number of sensors
 - Modalities
 - Stationary and mobile
- Communicate sensor data to a fusion center
 - Raw data
 - Processed data
- But, large networks imply communication issues

Fusion architectures

Decentralized architecture

- Local processing of sensor data
- Transmit target tracks instead of raw sensor data
- Benefits:
 - Compact and common representation
 - Reduce complexity
 - Scalability

Decentralized architecture

- New issues with decentralized architecture
- Track fusion
 - Correlations?
 - Target association?
- Communication
 - Which data?
 - Delayed data?
 - Out of sequence?

The framework

- Implementation and evaluation
- Tailored for target tracking
- Two parts:
 - Architecture
 - Simulation

Link	Node Connections	Abstract base objects
Network and fusion	Fusion node Local tracks Communication manager Remote tracks Fusion Global tracks Fusion	
Physical Platform	Sensor	

Architecture – Fusion node

The framework - Simulation

- Physical objects
 - Trajectories
 - Measurements
- Simulation loop
- Tools for evaluation:
 - Monte carlo
 - Performance metrics

Case study

- Impact of communication reduction wrt to track fusion algorithm
- Area surveillance scenario
- A moving target
- Sensors
 - Visual cameras
 - Two stationary, one mobile
- Network
 - Each sensor acting as fusion node
 - Ideal point-to-point links

Case study - Setup

- Time step 1s
- Target: Constant velocity in 3-D
- Fusion nodes:
 - Measurements: Az-EI angles to target (pD 0.7)
 - MHT
- Communication reduction
 - Transmit latest information
 - Full rate (C0), every 2s (C2), every 5s (C5)

Case study – Track fusion algorithms

- Channel cache
 - Information form
 - Inspired by channel filter
 - Single connected tree topology
 - Received information is stored in a local *channel cache*
 - Can handle out-of-sequence situations

- Inverse covariance intersection (ICI)
 - Based on covariance interseciton (CI)
 - Tailored for common information, e.g. target model
 - Less conservative but in many cases still consistent

Case study - Evaluation

- Scenario 95 s
- Monte carlo, 100 iterations per configuration
- Use GOSPA as performance metric
 - Penalizes localization error as well as missed/false tracks
- Centralized tracking with MHT as baseline

Case study - Evaluation

		Channel cache			ICI		
	Local	C0	C2	C5	CO	C2	C5
Node 1	9.30	3.69	3.76	4.68	3.80	4.11	4.80
Node 2	10.81	3.69	3.82	4.86	3.80	4.16	5.08
Node 3	10.90	3.69	3.84	4.77	3.78	3.82	4.78
Baseline	3.84						

Baseline _____ Local _____ C0 _____ C2 C5

Conclusions

- Benefits of decentralized fusion architecture for situational awereness
- A software simulation framework for decentralized networks
 - Track fusion
 - Communication
- Facilitate implementation and evaluation
 - Abstract object architecture
 - Tools for simulation
- Applied in a example case study

Thank you for your attention!

Viktor Deleskog, viktor.deleskog@foi.se C4ISR, Sensor Informatics Swedish Defence Research Agency (FOI)

